Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers.

نویسندگان

  • Xuyong Yang
  • Yanyan Ma
  • Evren Mutlugun
  • Yongbiao Zhao
  • Kheng Swee Leck
  • Swee Tiam Tan
  • Hilmi Volkan Demir
  • Qinyuan Zhang
  • Hejun Du
  • Xiao Wei Sun
چکیده

An efficient and stable quantum dot light-emitting diode (QLED) with double-sided metal oxide (MO) nanoparticle (NP) charge transport layers is fabricated by utilizing the solution-processed tungsten oxide (WO3) and zinc oxide (ZnO) NPs as the hole and electron transport layers, respectively. Except for the electrodes, all other layers are deposited by a simple spin-coating method. The resulting MO NP-based QLEDs show excellent device performance, with a peak luminance of 21300 cd/m(2) at the emission wavelength of 516 nm, a maximal current efficiency of 4.4 cd/A, and a low turn-on voltage of 3 V. More importantly, with the efficient design of the device architecture, these devices exhibit a significant improvement in device stability and the operational lifetime of 95 h measured at room temperature can be almost 20-fold longer than that of the standard device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells.

Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and proper...

متن کامل

Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes.

A highly efficient and stable QLED using an inorganic WO3 nanoparticle film as a hole injection layer is demonstrated.The resulting WO3 nanoparticle-based QLEDs also exhibit superior performance compared to that of the present PEDOT:PSS-based QLEDs. The results indicate that WO3 nanoparticles are promising solution-processed buffer layer materials and serve as a strong candidate for QLED techno...

متن کامل

Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers

Colloidal quantum dots, with their tunable luminescence properties, are uniquely suited for use as lumophores in lightemitting devices for display technologies and large-area planar lighting. In contrast to epitaxially grown quantum dots, colloidal quantum dots can be synthesized as highly monodisperse colloids and solution deposited over large areas into densely packed, solid-state multilayers...

متن کامل

The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot light-emitting diodes

Through introducing a probe layer of bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrpic) between QD emission layer and 4, 4-N, N- dicarbazole-biphenyl (CBP) hole transport layer, we successfully demonstrate that the electroluminescence (EL) mechanism of the inverted quantum dot light-emitting diodes (QD-LEDs) with a ZnO nanoparticle electron injection/transport layer should be dire...

متن کامل

Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes

The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2014